Skip to content

41.3. 物化视图#

PostgreSQL中的物化视图使用规则系统,就像视图一样,但以类似表的形式保存结果。

CREATE MATERIALIZED VIEW mymatview AS SELECT * FROM mytab;

CREATE TABLE mymatview AS SELECT * FROM mytab;

之间的主要区别在于,物化视图不能直接更新,并且用于创建物化视图的查询以与存储视图查询相同的方式存储,以便可以使用

REFRESH MATERIALIZED VIEW mymatview;

在PostgreSQL系统目录中关于物化视图的信息与表或视图的信息完全相同。因此,对于解析器来说,物化视图是一个关系,就像表或视图一样。当查询中引用物化视图时,数据会直接从物化视图返回,就像从表中返回一样;规则仅用于填充物化视图。

虽然访问存储在物化视图中的数据通常比直接访问基础表或通过视图访问快得多,但数据并不总是最新的;但有时不需要最新数据。考虑记录销售额的表

CREATE TABLE invoice (
    invoice_no    integer        PRIMARY KEY,
    seller_no     integer,       -- ID of salesperson
    invoice_date  date,          -- date of sale
    invoice_amt   numeric(13,2)  -- amount of sale
);

如果人们希望能够快速绘制历史销售数据,他们可能希望进行汇总,并且可能不在乎当前日期的不完整数据

CREATE MATERIALIZED VIEW sales_summary AS
  SELECT
      seller_no,
      invoice_date,
      sum(invoice_amt)::numeric(13,2) as sales_amt
    FROM invoice
    WHERE invoice_date < CURRENT_DATE
    GROUP BY
      seller_no,
      invoice_date;

CREATE UNIQUE INDEX sales_summary_seller
  ON sales_summary (seller_no, invoice_date);

此物化视图可能对在为销售人员创建的仪表板中显示图表很有用。可以使用此 SQL 语句安排一项作业在每晚更新统计信息

REFRESH MATERIALIZED VIEW sales_summary;

物化视图的另一种用途是允许更快地访问通过外部数据包装器从远程系统获取的数据。下面是一个使用file_fdw的简单示例,其中包含时间,但由于这是在本地系统上使用缓存,因此与访问远程系统相比,性能差异通常会大于此处显示的差异。请注意,我们还利用了在物化视图上放置索引的能力,而file_fdw不支持索引;此优势可能不适用于其他类型的外部数据访问。

设置

CREATE EXTENSION file_fdw;
CREATE SERVER local_file FOREIGN DATA WRAPPER file_fdw;
CREATE FOREIGN TABLE words (word text NOT NULL)
  SERVER local_file
  OPTIONS (filename '/usr/share/dict/words');
CREATE MATERIALIZED VIEW wrd AS SELECT * FROM words;
CREATE UNIQUE INDEX wrd_word ON wrd (word);
CREATE EXTENSION pg_trgm;
CREATE INDEX wrd_trgm ON wrd USING gist (word gist_trgm_ops);
VACUUM ANALYZE wrd;

现在让我们对单词进行拼写检查。直接使用file_fdw

SELECT count(*) FROM words WHERE word = 'caterpiler';

 count
-------
     0
(1 row)

使用EXPLAIN ANALYZE,我们看到

Aggregate  (cost=21763.99..21764.00 rows=1 width=0) (actual time=188.180..188.181 rows=1 loops=1)
   ->  Foreign Scan on words  (cost=0.00..21761.41 rows=1032 width=0) (actual time=188.177..188.177 rows=0 loops=1)
         Filter: (word = 'caterpiler'::text)
         Rows Removed by Filter: 479829
         Foreign File: /usr/share/dict/words
         Foreign File Size: 4953699
 Planning time: 0.118 ms
 Execution time: 188.273 ms

如果使用物化视图,则查询速度会快得多

Aggregate  (cost=4.44..4.45 rows=1 width=0) (actual time=0.042..0.042 rows=1 loops=1)
   ->  Index Only Scan using wrd_word on wrd  (cost=0.42..4.44 rows=1 width=0) (actual time=0.039..0.039 rows=0 loops=1)
         Index Cond: (word = 'caterpiler'::text)
         Heap Fetches: 0
 Planning time: 0.164 ms
 Execution time: 0.117 ms

无论哪种方式,单词拼写错误,所以让我们看看我们想要什么。再次使用file_fdwpg_trgm

SELECT word FROM words ORDER BY word <-> 'caterpiler' LIMIT 10;

     word
---------------
 cater
 caterpillar
 Caterpillar
 caterpillars
 caterpillar's
 Caterpillar's
 caterer
 caterer's
 caters
 catered
(10 rows)
Limit  (cost=11583.61..11583.64 rows=10 width=32) (actual time=1431.591..1431.594 rows=10 loops=1)
   ->  Sort  (cost=11583.61..11804.76 rows=88459 width=32) (actual time=1431.589..1431.591 rows=10 loops=1)
         Sort Key: ((word <-> 'caterpiler'::text))
         Sort Method: top-N heapsort  Memory: 25kB
         ->  Foreign Scan on words  (cost=0.00..9672.05 rows=88459 width=32) (actual time=0.057..1286.455 rows=479829 loops=1)
               Foreign File: /usr/share/dict/words
               Foreign File Size: 4953699
 Planning time: 0.128 ms
 Execution time: 1431.679 ms

使用物化视图

Limit  (cost=0.29..1.06 rows=10 width=10) (actual time=187.222..188.257 rows=10 loops=1)
   ->  Index Scan using wrd_trgm on wrd  (cost=0.29..37020.87 rows=479829 width=10) (actual time=187.219..188.252 rows=10 loops=1)
         Order By: (word <-> 'caterpiler'::text)
 Planning time: 0.196 ms
 Execution time: 198.640 ms

如果您能容忍将远程数据定期更新到本地数据库,则性能优势可能会很大。